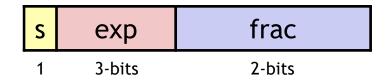
IEEE 754 Rules & Properties

Analysis of IEEE 754

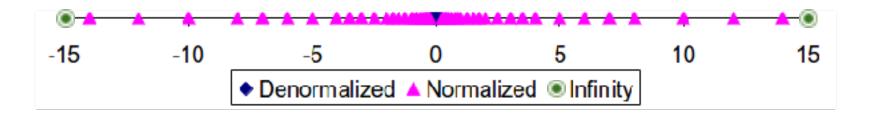
- As we saw last time, IEEE 754...
 - can represent numbers at wildly different magnitudes (limited by the length of the exponent)
 - provides the same relative accuracy at all magnitudes (limited by the length of the mantissa)
- There are some other nice properties as well related to rounding and arithmetic operations as we'll see today.
- Turns out there are some drawbacks as well.

Distribution of values

Remember our 6-bit version of IEEE 754?

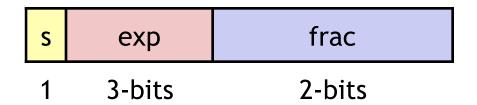


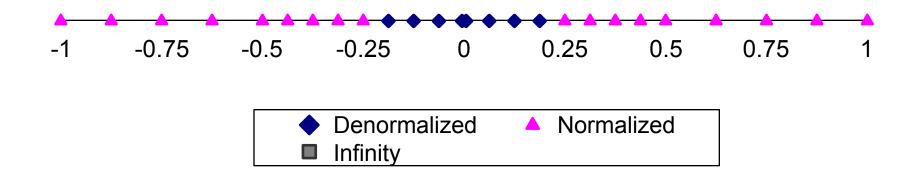
- The below graph plots values along a number line between negative and positive infinity.
- Notice how we lose precision as the whole numbers get larger.
- Why is that?



Distribution of values (close-up view)

- 6-bit IEEE-like format
 - e = 3 exp bits
 - f = 2 frac bits
 - Bias is 3





Special properties of IEEE encoding

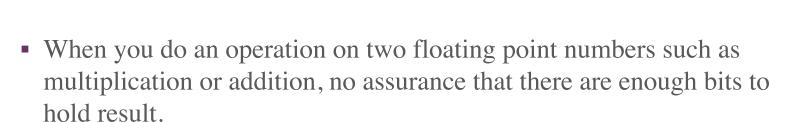
- Floating point zero is all zeroes at the bit level.
 - This means zero is all 0's.
- Can use unsigned integer comparison at the bit level, with a couple notable exceptions...
 - Must consider sign bit
 - Must consider positive and negative 0
 - NaN's
 - Using unsigned comparison a Nan cannot be greater than any other value.
 - Bit-identical NaN values must not be considered equal.
- Otherwise proper ordering, even across types (ex. norm vs denorm)

Interpreting as unsigned bit patterns

- Lets convince ourselves. Pick two and test.
- Denorm 000011 and Norm 000101
 - What are their decimal values with unsigned int interpretation?
- This is not an accident!
- Special case, the sign bit.
 - Can be overcome without too much trouble (out of scope for this course)

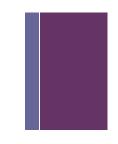
S	exp	fra	ac
1	3-bits	2-b	its
000000 000001 000010 000011 000100 000101 000110 001010 001001	010000 010001 010010 010011 010100 010111 010110 011001 011010 011101 011110 011111	100000 100001 100010 100011 100100 100110 100111 101000 101011 101100 101111 101110 101111	110000 110001 110010 110011 110100 110110 110111 111000 111011 111100 111111 111101 111111

Rounding



- We need a rounding strategy
 - $x +_f y = Round(x + y)$
 - $x *_f y = Round(x * y)$
- Basic idea
 - Compute exact result, make it fit into desired precision
 - Possibly overflow if exponent too large
 - Possibly round to fit into *frac*

Rounding modes



• IEEE 754 rounding modes

	\$1.40	\$1.60	\$1.50	\$2.50	-\$1.50
Towards zero	\$1	\$1	\$1	\$2	- \$1
■ <i>Round down</i> $(-\infty)$	\$1	\$1	\$1	\$2	-\$2
■ Round up $(+\infty)$	\$2	\$2	\$2	\$3	- \$1
■ Round Nearest (default)	\$1	\$2	\$2	\$2	-\$2

- IEEE 754 does *Rounding Nearest (Even)* rounding by default,
 - Special case: round to the 'nearest even' when you are exactly half-way between two possible rounded values.
 - All others rounding modes are statistically biased.
 - You can change mode, but you have to drop to assembly to do so.

+ 'Round to nearest' in decimal

- Applying to other decimal places / bit positions
- When exactly half-way between two possible values, round so that least significant digit is even
- E.g., round to nearest hundredth (2 digits right of decimal point)

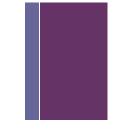
7.8949999	7.89	(Less than half way)
7.8950001	7.90	(Greater than half way)
7.8950000	7.90	(Half-way - round up so that the LSD is even)
7.88 50000	7.88	(Half-way - round down so that the LSD is even)

'Round to nearest' in binary

- Binary fractional numbers
 - "Half-way" when bits to right of rounding position = $100...0_2$
 - "Even" when least significant bit is 0
- E.g., round to nearest 1/4 (2 bits right of binary point)

Value ₁	0 Value ₂	Rounded ₂	Action	$Rounded_{10}$
2 3/32	10.00 <mark>011</mark>	10.00	(less than 1/2)	2
2 3/16	10.00110	10.01	(greater than 1/2)	2 1/4
2 7/8	10.11 <mark>100</mark>	11.00	(1/2 round-up)	3
2 5/8	10.10 <mark>100</mark>	10.10	(1/2 round-down)	2 1/2

Properties of floating point addition



- Closed under addition? Yes
 - But may generate infinity or NaN
- Commutative? **Yes**
- Associative? No
 - Due to overflow and inexactness of rounding
 - -(-1e20 + 1e20) + 3.14 == 3.14
 - -1e20 + (1e20 + 3.14) == 0.0
- 0 is additive identity? **Yes**
- Every element has additive inverse? **Almost**
 - Yes, except for infinities & NaNs
- Monotonicity Almost
 - $a \ge b \Rightarrow a + c \ge b + c$?
 - Except for infinities & NaNs

Properties of floating point multiplication

- Closed under multiplication? Yes
 - But may generate infinity or NaN
- Commutative? Yes
- Associative? No
 - Due to overflow and inexactness of rounding
 - (1e20 * 1e20) * 1e-20 = inf, 1e20 * (1e20 * 1e-20) = 1e20
- 1 is multiplicative identity? **Yes**
- Multiplication distributes over addition? No
 - Due to overflow and inexactness of rounding
 - 1e20 * (1e20 1e20) = 0.0, 1e20 * 1e20 1e20 * 1e20 = NaN
- Monotonicity Almost
 - $a \ge b \& c \ge 0 \implies a * c \ge b * c?$
 - Except for infinities & NaNs

Remember this?

• **Example**: Is
$$(x + y) + z = x + (y + z)$$
?

- for integral types? yes.
- for floating point types?

$$-(-1e20 + 1e20) + 3.14 == 3.14$$

$$-1e20 + (1e20 + 3.14) == 0.0$$

Do you have any intuition as to why yet?

Floating point in C

- Coercion and casting
 - Coercion between int, float, and double changes bit representation
 - double/float → int
 - Truncates fractional part
 - Like rounding toward zero
 - Not defined when out of range or NaN: Generally sets to TMin
 - int \rightarrow double
 - Exact conversion, as int has <= 53 bits
 - $int \rightarrow float$
 - Will round according to rounding mode, as int has >= 23 bits
- See *coercion_casting.c*

Floating point puzzles

- For each of the following C expressions, either:
 - Argue that it is true for all argument values
 - Explain why not true

```
int x = ...;
float f = ...;
double d = ...;
```

Assume neither d nor f is NaN

```
x == (int) (float) x
x == (int) (double) x
f == (float) (double) f
d == (double) (float) d
f == -(-f);
2/3 == 2/3.0
d < 0.0 ⇒ ((d*2) < 0.0)</li>
d > f ⇒ -f > -d
d * d >= 0.0
(d+f)-d == f
```

See float_puzzles.c

Summary

- IEEE Floating Point has clear mathematical properties
- One can reason about operations independent of implementation
 - As if computed with perfect precision and then rounded
- Not the same as real arithmetic
 - Violates associativity/distributivity
- Has improved the state of computing with floating point numbers tremendously and has received a number of impactful improvements since its introduction in the 80's!